Potential of Tetracycline Resistance Proteins To Evolve Tigecycline Resistance.

نویسندگان

  • Marius Linkevicius
  • Linus Sandegren
  • Dan I Andersson
چکیده

Tigecycline is a glycylcycline antibiotic active against multidrug-resistant bacterial pathogens. The objectives of our study were to examine the potential of the Tet(A), Tet(K), Tet(M), and Tet(X) tetracycline resistance proteins to acquire mutations causing tigecycline resistance and to determine how this affects resistance to earlier classes of tetracyclines. Mutations in all four tet genes caused a significant increase in the tigecycline MIC in Escherichia coli, and strains expressing mutant Tet(A) and Tet(X) variants reached clinically relevant MICs (2 mg/liter and 3 mg/liter, respectively). Mutations predominantly accumulated in transmembrane domains of the efflux pumps, most likely increasing the accommodation of tigecycline as a substrate. All selected Tet(M) mutants contained at least one mutation in the functionally most important loop III of domain IV. Deletion of leucine 505 of this loop led to the highest increase of the tigecycline MIC (0.5 mg/liter) among Tet(M) mutants. It also caused collateral sensitivity to earlier classes of tetracyclines. A majority of the Tet(X) mutants showed increased activity against all three classes of tetracylines. All tested Tet proteins have the potential to acquire mutations leading to increased MICs of tigecycline. As tet genes are widely found in pathogenic bacteria and spread easily by horizontal gene transfer, resistance development by alteration of existing Tet proteins might compromise the future medical use of tigecycline. We predict that Tet(X) might become the most problematic future Tet determinant, since its weak intrinsic tigecycline activity can be mutationally improved to reach clinically relevant levels without collateral loss in activity to other tetracyclines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro susceptibility of Campylobacter jejuni from Kuwait to tigecycline & other antimicrobial agents

BACKGROUND & OBJECTIVES There is an increasing frequency of resistance of Campylobacter jejuni to antimicrobial agents making treatment difficult. In this study, the in vitro susceptibility of C. jejuni isolates collected over an eight year period was tested against tigecycline, a glycylcycline, the previously tested antimicrobial agents in Kuwait, ciprofloxacin, erythromycin and tetracycline, ...

متن کامل

Functional, biophysical, and structural bases for antibacterial activity of tigecycline.

Tigecycline is a novel glycylcycline antibiotic that possesses broad-spectrum activity against many clinically relevant species of bacterial pathogens. The mechanism of action of tigecycline was delineated using functional, biophysical, and molecular modeling experiments in this study. Functional assays showed that tigecycline specifically inhibits bacterial protein synthesis with potency 3- an...

متن کامل

Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase.

The flavin-dependent monooxygenase TetX confers resistance to all clinically relevant tetracyclines, including the recently approved, broad-spectrum antibiotic tigecycline (Tygacil®) which is a critical last-ditch defense against multidrug-resistant pathogens. TetX represents the first resistance mechanism against tigecycline, which circumvents both the tet-gene encoded resistances, relying on ...

متن کامل

Evolution and Mechanisms of Tigecycline Resistance in Escherichia coli

Linkevičius, M. 2015. Evolution and Mechanisms of Tigecycline Resistance in Escherichia coli. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1121. 58 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9285-4. Antibiotic resistance is an ongoing global medical crisis and we are in great need of new antibacterial agents to combat rapidly emerging r...

متن کامل

Structural characterization of an alternative mode of tigecycline binding to the bacterial ribosome.

Although both tetracycline and tigecycline inhibit protein synthesis by sterically hindering the binding of tRNA to the ribosomal A site, tigecycline shows increased efficacy in both in vitro and in vivo activity assays and escapes the most common resistance mechanisms associated with the tetracycline class of antibiotics. These differences in activities are attributed to the tert-butyl-glycyla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 60 2  شماره 

صفحات  -

تاریخ انتشار 2016